Water

- Introduction
- Unusual Properties of Water
- Hydrogen Bond
 HB in water
 HB in other molecules
- Interaction between water and charged molecules
- Interaction between water and polar molecules
- Interaction between water and non-polar molecules
- Structure and function of biomolecules depended on weak interaction
- Solute's effect on colligative properties of aqueous solution colligative properties
- hypertonic solution, isotonic solution, hypotonic solution
- Ionization of water

	Melting point (°C)	Boiling point (°C)	Heat of vaporization (J/g)*
Water	0	100	2,260
Methanol (CH ₃ OH)	-98	65	1,100
Ethanol (CH ₃ CH ₂ OH)	-117	78	854
Propanol (CH ₃ CH ₂ CH ₂ OH)	-127	97	687
Butanol (CH ₃ (CH ₂) ₂ CH ₂ OH)	-90	117	590
Acetone (CH ₃ COCH ₃)	-95	56	523
Hexane (CH ₃ (CH ₂) ₄ CH ₃)	-98	69	423
Benzene (C ₆ H ₆)	6	80	394
Butane (CH ₃ (CH ₂) ₂ CH ₃)	-135	-0.5	381
Chloroform (CHCl ₃)	-63	61	247
heat energy required to convert 1.0 g of a li measure of the energy required to overcome le 2-1 inger Principles of Blochemistry, Fifth Edition 08 W.H.Freeman and Company	iquid at its boiling point and at atm attractive forces between molecul	ospheric pressure into its gaseous es in the liquid phase.	state at the same temperature. It is a d

	Group																	
Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	<u>H</u> 2.1																	<u>He</u> 0
2	<u>Li</u> 0.98	<u>Be</u> 1.57											<u>B</u> 2.04	<u>C</u> 2.55	<u>N</u> 3.04	<u>0</u> 3.44	<u>F</u> 3.98	<u>Ne</u> 0
3	<u>Na</u> 0.93	<u>Mg</u> 1.31											<u>Al</u> 1.61	<u>Si</u> 1.9	<u>Р</u> 2.19	<u>S</u> 2.58	<u>Cl</u> 3.16	$\frac{\mathrm{Ar}}{\mathrm{0}}$
4	<u>K</u> 0.82	<u>Ca</u> 1	<u>Sc</u> 1.36	<u>Ti</u> 1.54	<u>V</u> 1.63	<u>Cr</u> 1.66	<u>Mn</u> 1.55	<u>Fe</u> 1.83	<u>Co</u> 1.88	<u>Ni</u> 1.91	<u>Cu</u> 1.9	<u>Zn</u> 1.65	<u>Ga</u> 1.81	<u>Ge</u> 2.01	<u>As</u> 2.18	<u>Se</u> 2.55	<u>Br</u> 2.96	Kr 0
5	<u>Rb</u> 0.82	<u>Sr</u> 0.95	<u>Y</u> 1.22	<u>Zr</u> 1.33	<u>Nb</u> 1.6	<u>Mo</u> 2.16	<u>Tc</u> 1.9	<u>Ru</u> 2.2	<u>Rh</u> 2.28	<u>Pd</u> 2.2	<u>Ag</u> 1.93	<u>Cd</u> 1.69	<u>In</u> 1.78	<u>Sn</u> 1.96	<u>Sb</u> 2.05	<u>Te</u> 2.1	I 2.66	<u>Xe</u> 2.6
6	<u>Cs</u> 0.79	<u>Ba</u> 0.89	<u>La</u> 1.1	<u>Hf</u> 1.3	<u>Ta</u> 1.5	<u>W</u> 2.36	<u>Re</u> 1.9	<u>Os</u> 2.2	<u>Ir</u> 2.2	Pt 2.28	<u>Au</u> 2.54	Hg 2	<u>Tl</u> 2.04	<u>Pb</u> 2.33	<u>Bi</u> 2.02	<u>Po</u> 2	<u>At</u> 2.2	Rn 0
7	<u>Fr</u> 0.7	<u>Ra</u> 0.89	<u>Ac</u> 1.1	<u>Rf</u>	Db	<u>Sg</u>	<u>Bh</u>	<u>Hs</u>	<u>Mt</u>	Uun	<u>Uuu</u>	<u>Uub</u>						
	Ι	Lanth	anide	s	<u>Ce</u> 1.12	<u>Pr</u> 1.13	<u>Nd</u> 1.14	<u>Pm</u> 1.13	<u>Sm</u> 1.17	<u>Eu</u> 1.2	<u>Gd</u> 1.2	<u>Tb</u> 1.1	<u>Dy</u> 1.22	<u>Ho</u> 1.23	<u>Er</u> 1.24	<u>Tm</u> 1.25	<u>Yb</u> 1.1	<u>Lu</u> 1.2
		Acti	nides		<u>Th</u> 1.3	<u>Pa</u> 1.5	<u>U</u> 1.38	<u>Np</u> 1.36	<u>Pu</u> 1.28	<u>Am</u> 1.3	<u>Cm</u>	<u>Bk</u> 1.3	<u>Cf</u> 1.3	<u>Es</u> 1.3	<u>Fm</u> 1.3	<u>Md</u> 1.3	<u>No</u> 1.3	Lr

ADLE 2-5 SUIUDI	אמטוונופג טו גטוויפ עמצפג ווי שמנפו								
Sas	Structure*	Polarity	Solubility in water (g/L) [†]						
Nitrogen	N=N	Nonpolar	0.018 (40 °C)						
Oxygen	0=0	Nonpolar	0.035 (50 °C)						
Carbon dioxide	δδ- 0=C=0	Nonpolar	0.97 (45 °C)						
Ammonia	H H H ₈₋	Polar	900 (10 °C)						
lydrogen sulfide	H H s-	Polar	1,860 (40 °C)						

[†]Note that polar molecules dissolve far better even at low temperatures than do nonpolar molecules at relatively high temperatures.

 Table 2-3

 Lehninger Principles of Biochemistry, Fifth Edition

 © 2008 W.H. Freeman and Company

Molarity Nomality Molality Percentage Concentration

Unit Conversion

Percentage Concentration

- 1) % concentration can be in V/V, W/W, or W/V
- Like most %s, V/V and W/W need to have the same units on top and bottom.
- W/V is sort of in the same units; V is mostly water and water's density is 1 g/mL or 1 kg/L
- 3 g $H_2O_2/100$ mL solution \approx 3 g $H_2O_2/100$ g solution

Very Low Concentration

Nomality

- The number of "equivalent weights" of solute per liter of solution
 - Another way to express concentration
 - Used when it's important to know how many "reactive groups" are present in a solution rather than how many molecules

Concentration after Dilution

$C_1V_1 = C_2V_2$

For Example: 20 mL 0.5 M NaCl is diluted to 200 mL, to find the final NaCl concentration, we do the following calculation:

 $0.02 L \times 0.5 M = C_2 \times 0.20 L \implies$

$$C_2 = \frac{0.02 \text{ L} \times 0.5 \text{ M}}{0.20 \text{ L}} = 0.05 \text{ M}$$

Unit Conversion

```
Weight: 1 g = 1000 mg = 10^{6} \mu g
Length: 1 m = 10 dm = 100 cm = 1000 mm
Area: 1 m<sup>2</sup> = 100 dm<sup>2</sup>
Volume: 1 dm<sup>3</sup> = 1 L = 1000 cm<sup>3</sup> = 1000 c.c.
=1000 mL=10^{6} \mu L
```


Concentration Conversion

$$M \Longrightarrow N$$

$$M \Longrightarrow \%$$

$$1 \text{ M NaCl: } 1 \text{ M} = \frac{1 \text{ mol}}{1 \text{ L}} = \frac{1 \text{ mol} \times 58.5 \text{ g/mol}}{1 \text{ L} \times 1000 \text{ mL/L}}$$

$$= \frac{58.5 \text{ g}}{10 \times 100 \text{ mL}} = \frac{5.85 \text{ g}}{100 \text{ mL}} = 5.85\%$$

$$\% \Longrightarrow M$$

$$5 \% \text{ NaOH: } 5 \% = \frac{5.0 \text{ g}}{100 \text{ mL}} = \frac{5.0 \text{ g} \times 1 \text{ mol/40 g}}{100 \text{ mL} \times 1 \text{ L/1000 mL}}$$

$$= \frac{1.25 \text{ mol}}{1 \text{ L}} = 1.25 \text{ M}$$

Reactions of Brønsted-Lowry Acids and Bases

- · Loss of a proton from an acid forms its conjugate base.
- Gain of a proton by a base forms its conjugate acid.
- A double reaction arrow is used between starting materials and products to indicate that the reaction can proceed in the forward and reverse directions. These are equilibrium arrows.

Factors that Determine Acid Strength

- q Anything that stabilizes a conjugate base A:⁻ makes the starting acid H—A more acidic.
- q Four factors affect the acidity of H—A. These are:
- 1. Element effects
- 2. Inductive effects
- 3. Resonance effects
- 4. Hybridization effects
- q No matter which factor is discussed, the same procedure is always followed. To compare the acidity of any two acids:
- o Always draw the conjugate bases.
- o Determine which conjugate base is more stable.
- The more stable the conjugate base, the more acidic the acid.

 3. Resonance Ef Resonance is In the example 	fects a third factor th below, when w	at influences acidity. ye compare the acidities of ethanol
former.	CH ₃ CH ₂ O-H ethanol $pK_a = 16$	$CH_{3} - \begin{pmatrix} 0 \\ 0 \\ -H \\ 0 \\ -H \\ acetic acid \\ pK_{a} = 4.8 \longleftarrow \text{stronger acid}$
• When the cor is evident tha resonance sta _{CH3} CH ₂ O-H —	ijugate bases of t the conjugate abilization, when → CH₃CH₂ё:	the two species are compared, it base of acetic acid enjoys reas that of ethanol does not. ← The negative charge is localized on 0.
ethanol acid	ethoxide conjugate bas only one Lewis stru	e ucture

12/23/10

31

$$\begin{bmatrix} H_2 & 0 \end{bmatrix} = \frac{n}{v} = \frac{1000 \text{ mL} \times 1 \text{ g/mL} / 18 \text{ g/mL}}{1 \text{ L}} = 55.5 \text{ M}$$

$$K_W = 1.8 \times 10^{-16} \text{ M}$$

$$\begin{bmatrix} H^* \end{bmatrix} \begin{bmatrix} 0H^- \end{bmatrix} = K_W \begin{bmatrix} H_2 & 0 \end{bmatrix} = 1.8 \times 10^{-16} \text{ M} \times 55.5 \text{ M}$$

$$= 1.0 \times 10^{-14} \text{ M}^2$$

$$\begin{bmatrix} H^* \end{bmatrix} = \begin{bmatrix} 0H^- \end{bmatrix}$$

$$\begin{bmatrix} H^* \end{bmatrix}^2 = 1.0 \times 10^{-14} \text{ M}^2$$

$$\begin{bmatrix} H^* \end{bmatrix} = 1.0 \times 10^{-7} \text{ M}$$

$$p = -\log()$$

$$pH = -\log[H^*] = -\log((1.0 \times 10^{-7})) = 7.0$$

$$pH + pOH = 14$$

Temperature	Kw
-35°C	$1.0 \times 10^{-17} \text{ mol}^2 \text{L}^{-2}$
0°C	$1.12 \times 10^{-15} \text{ mol}^2 \text{L}^{-2}$
25°C	$9.91 \times 10^{-15} \text{ mol}^2 \text{L}^{-2}$
60°C	$9.311 \times 10^{-14} \text{ mol}^2 \text{L}^{-2}$
300°C (~ 50 MPa)	$9.311 \times 10^{-12} \text{ mol}^2 \text{L}^{-2}$

TABLE 2–6	The pH S	cale	
[H ⁺](M)	pН	[ОН [—]] (м)	рОН*
10 ⁰ (1)	0	10 ⁻¹⁴	14
10 ⁻¹	1	10 ⁻¹³	13
10 ⁻²	2	10 ⁻¹²	12
10 ⁻³	3	10 ⁻¹¹	11
10 ⁻⁴	4	10 ⁻¹⁰	10
10 ⁻⁵	5	10 ⁻⁹	9
10 ⁻⁶	6	10 ⁻⁸	8
10 ⁻⁷	7	10 ⁻⁷	7
10 ⁻⁸	8	10 ⁻⁶	6
10 ⁻⁹	9	10 ⁻⁵	5
10 ⁻¹⁰	10	10 ⁻⁴	4
10 ⁻¹¹	11	10 ⁻³	3
10 ⁻¹²	12	10 ⁻²	2
10 ⁻¹³	13	10 ⁻¹	1
10 ⁻¹⁴	14	10 ⁰ (1)	0
10^{-14} The expression pO oncentration, of a s -log [OH ⁻], which is ases, pH + pOH = - able 2-6 ehonger Principles of Bic	14 H is sometimes solution; pOH is s analogous to t 14. ochemistry. Fifth Edin	10° (1) used to describe the I defined by the expre the expression for pH.	0 pasicity, or OH ssion pOH = Note that in a

pH of Strong Acid/Base

- Strong Acids: HCI, HBr, HI, HCIO₄, H₂SO₄, HNO₃, etc. (Leveling Effect: which one is the strongest acid?)
- Strong Bases: NaOH, KOH, RbOH, CsOH
- For HCI, [H⁺] = [HCI], so pH = -log[H⁺] = -log [HCI]
- For NaOH, [OH⁻] = [NaOH], pOH = -log[OH⁻] = -log[NaOH], pH = 14 - pOH

71

Strengths of Conjugate Acid – Base pairs

- In chemical equilibrium, we have a competition between forward and reverse reactions. For acid and base reactions, this means we have a competition between two sets of acids and bases
- i.e. $acid 1 + base 1 \implies acid 2 + base 2$
- If acid 1 and base 1 are stronger than acid 2 and base 2, then the forward reaction will dominate
- If acid 2 and base 2 are stronger than acid 1 and base 1, then the reverse reaction will dominate
- The stronger the acid, the weaker it's conjugate base and the weaker the acid, the stronger it's conjugate base.

$$\begin{aligned} x^{2} &= K_{a} (c - x) = K_{a} c - K_{a} x \\ x^{2} + K_{a} x - K_{a} c = 0 \\ For ax^{2} + bx + c = 0 \\ x &= \frac{-b + \sqrt{b^{2} - 4 ac}}{2a} \\ x &= \frac{-K_{a} + \sqrt{K_{a}^{2} - 4 \times 1 \times (-K_{a} c)}}{2} = \frac{-K_{a} + \sqrt{K_{a}^{2} + 4 K_{a} c}}{2} \\ If C_{a} / K_{a} > 100, you can simplify \\ K_{a} expression to just K_{a} = (x^{2} / C_{a}) \end{aligned}$$

For acetic acid, if c = 0.25 M, $K_a = 1.74 \times 10^{-5} \text{ M}$ x = 0.00208 M, pH = -log (0.00208) = 2.68 x / c = 0.00208 / 0.25 = 0.0083 = 0.83 % Ka = X²/C, X = 0.00209 M, almost no error. For acetic acid, if c = 0.00025 M, x = 0.0000578, pH = -log (0.0000578) = 4.24 x / c = 0.0000578 / 0.00025 = 0.231 = 23.1 % Ka = X²/C, X = 0.0000660 M, (0.0000660-0.0000578)/0.0000578 × 100% = 14.2%. pH = -log(0.0000660) = 4.18.

Buffers

• Buffer Solutions resist a change in pH

- Buffers contain relatively large concentrations of either
 - An acid, HA and its conjugate base A-
 - A base, B, and its conjugate acid (BH⁺)

$$p_{H} = -\log[H^{+}] = -\log\left(\frac{K_{a}[AcOH]}{[AcO^{-}]}\right) = -\log K_{a} + \left(-\log\frac{[AcOH]}{[AcO^{-}]}\right)$$
$$= p_{K_{a}} + \log\frac{[AcO^{-}]}{[AcOH]}$$
$$For a general equation:$$
$$p_{H} = p_{K_{a}} + \log\frac{[base]}{[acid]}$$

Name	РКа	Name	рКа		
MES	6.15	Bicine	8.35		
Boric acid	9.24	CHES	9.50		
Phosphoric acid	6.91(pK _a 2)	Citric acid	$3.06 (pK_a1)$		
Citric acid	5.40 (pK _a 3)	Citric acid	4.74 (pK _a 2)		
ADA	6.60	Glycylglycine	8.40		
Succinic acid	3.06 (pK _a 1)	HEPES	7.55		
Imidazole	7.00	HEPPS	8.00		
Phosphoric acid	2.12 (pK _a 1)	MOPS	7.20		
Bis-Tris Propane	6.80	Phosphoric acid	12.32 (pK _a 3)		
Glycine amide (HCl)	8.20	PIPES	6.80		
Formic acid	3.75	TES	7.50		
Acetic acid	4.76	Tricine	8.15		
Succinic acid	5.57 (pKa2)	Tris	8.30		

