Water

- Introduction
- Unusual Properties of Water
- Hydrogen Bond HB in water
HB in other molecules
- Interaction between water and charged molecules
- Interaction between water and polar molecules
- Interaction between water and non-polar molecules
- Structure and function of biomolecules depended on weak interaction
- Solute's effect on colligative properties of aqueous solution colligative properties hypertonic solution, isotonic solution, hypotonic solution
- Ionization of water

Figure 2-1a
Lehninger Princi
Chninger Principles of Biochemistry, Fifth Edition
02008 W. H. Freeman and Company

Properties of Alkanes

Alkanes show regular increases in both boiling point and melting point as molecular weight increases

- Due to the presence of weak dispersion forces between molecules
- Dispersion forces increase as molecular size increases
- A sufficient amount of energy is needed to overcome the dispersion forces and melt a solid or boil a liquid

| TABLE 2-1 | Melting Point, Boiling Point, and Heat of Vaporization of Some Common Solvents | | |
| :--- | :---: | :---: | :---: | :---: |
| | Melting point $\left({ }^{\circ} \mathrm{C}\right)$ | Boiling point $\left({ }^{\circ} \mathrm{C}\right)$ | Heat of vaporization $(\mathrm{J} / \mathrm{g})^{*}$ |
| Water | 0 | 100 | 2,260 |
| Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ | -98 | 65 | 1,100 |
| Ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ | -117 | 78 | 854 |
| Propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ | -127 | 97 | 687 |
| Butanol $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ | -90 | 117 | 590 |
| Acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right)$ | -95 | 56 | 523 |
| Hexane $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right)$ | -98 | 69 | 423 |
| Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ | 6 | 80 | 394 |
| Butane $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right)$ | -135 | -0.5 | 381 |
| Chloroform $\left(\mathrm{CHCl}_{3}\right)$ | -63 | 61 | 247 |

*The heat energy required to convert 1.0 g of a liquid at its boiling point and at atmospheric pressure into its gaseous state at the same temperature. It is a direct measure of the energy required to overcome attractive forces between molecules in the liquid phase.
Table 2-1
ehninger Principles of Biochemistry, Fifth Edition
02008 W. H. Freeman and Company

Figure 2-1b
Lehninger Principles of Biochemistry, Fifth Edition
-2008 W. H. Freeman and Company

Atom Dependent
Directional

Figure 2-5
ehninger Principles of Biochemistry, Fifth Edition
2008 W. H. Freeman and Company

Periodic Table of Elements: Electronegativity

	Group																	
Period	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	$\frac{H}{2.1}$																	$\frac{\mathrm{He}}{0}$
2	$\frac{\mathrm{Li}}{\frac{\mathrm{Li}}{0.98}}$	3											$\begin{array}{\|l\|} \hline \frac{B}{2.04} \\ \hline \end{array}$	$4 \longdiv { C }$	$\begin{aligned} & \frac{N}{3} \\ & 3.04 \\ & \hline \end{aligned}$	$4 \longdiv { \frac { 0 } { 3 } . 4 4 }$	$\begin{array}{\|l\|l\|} \hline F \\ 4.98 \\ \hline \end{array}$	$8 \frac{\mathrm{Ne}}{0}$
3	$\frac{\mathrm{Na}}{0.93}$	$\frac{\mathrm{Mg}}{1.31}$											$\begin{array}{\|l\|} \hline \frac{\mathrm{Al}}{1.61} \\ \hline \end{array}$	$1 \frac{\mathrm{Si}}{1.9}$	$\frac{\mathrm{P}}{2.19}$	$9 \frac{\mathrm{~S}}{2.58}$	$8 \frac{\mathrm{Cl}}{3.16}$	6
4	$\frac{\mathrm{K}}{0.82}$	$\frac{\mathrm{Ca}}{1}$	$\frac{\mathrm{Sc}}{1.36}$	$\frac{\mathrm{Ti}}{1.54}$	$\frac{\mathrm{V}}{1.63}$	$3 \frac{\mathrm{Cr}}{1.66}$	$\frac{\mathrm{Mn}}{1.55}$	5	$\frac{\mathrm{Co}}{1.88}$	8	$\frac{\mathrm{Cu}}{1.9}$	$\frac{\mathrm{Zn}}{1.65}$	$\frac{\mathrm{Ga}}{1.81}$	$1 \frac{\mathrm{Ge}}{2.01}$	$\begin{array}{\|l\|} \hline \frac{\mathrm{As}}{2.18} \\ \hline \end{array}$	$8 \frac{\mathrm{Se}}{2.55}$	$5 \frac{\mathrm{Br}}{2.96}$	6
5	$\frac{\mathrm{Rb}}{0.82}$	$\frac{\mathrm{Sr}}{0.95}$	$\left\lvert\, \begin{aligned} & \mathrm{Y} \\ & 1.22 \end{aligned}\right.$	$\frac{\mathrm{Zr}}{1.33}$	$\frac{\mathrm{Nb}}{1.6}$	$\frac{\mathrm{Mo}}{2.16}$	$\frac{\mathrm{Tc}}{1.9}$	$\frac{\mathrm{Ru}}{2.2}$	$\frac{\mathrm{Rh}}{2.28}$	$\frac{\mathrm{Pd}}{2.2}$	$\begin{array}{\|l\|} \hline \mathrm{Ag} \\ 1.93 \\ \hline \end{array}$	$\frac{\mathrm{Cd}}{1.69}$	$\frac{\operatorname{In}}{1.78}$	$\frac{\frac{S n}{1.96}}{}$	$\frac{\mathrm{Sb}}{2.05}$	$5 \frac{\mathrm{Te}}{2.1}$	$\frac{1}{2.66}$	$6 \frac{\mathrm{Xe}}{2.6}$
6	$\frac{\mathrm{Cs}}{0.79}$	$\begin{array}{\|l\|} \frac{\mathrm{Ba}}{0.89} \\ \hline \end{array}$	$\frac{\mathrm{La}}{1.1}$	$\frac{\mathrm{Hf}}{1.3}$	$\frac{\mathrm{Ta}}{1.5}$	$\frac{\mathrm{W}}{2.36}$	$\frac{\mathrm{Re}}{1.9}$	$\frac{\mathrm{Os}}{2.2}$	$\frac{\mathrm{Ir}}{2.2}$	$\frac{\mathrm{Pt}}{2.28}$	$\begin{array}{\|l\|l\|} \hline \frac{\mathrm{Au}}{2.54} \\ \hline \end{array}$	$\frac{\mathrm{Hg}}{2}$	$\frac{\mathrm{Tl}}{2.04}$	$4 \frac{\mathrm{~Pb}}{2.33}$	$\frac{\mathrm{Bi}^{2.02}}{}$	$2 \frac{\mathrm{Po}}{2}$	$\frac{\mathrm{At}}{2.2}$	$\frac{\mathrm{Rn}}{0}$
7	$\frac{\mathrm{Er}}{0.7}$	$\frac{\mathrm{Ra}}{0.89}$	$\frac{\mathrm{Ac}}{1.1}$	$\xrightarrow{\text { Rf }}$	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
		Lanth	anides		$\left\lvert\, \frac{\mathrm{Ce}}{1.12}\right.$	$2 \frac{\operatorname{Pr}}{1.13}$	$\frac{\mathrm{Nd}}{1.14}$	$4 \left\lvert\, \begin{array}{l\|l} \frac{\mathrm{Pm}}{1.13} \\ \hline \end{array}\right.$	$\frac{\frac{S m}{1.17}}{}$	$\frac{\mathrm{Eu}}{1.2}$	$\frac{G d}{1.2}$	$\frac{\mathrm{Tb}}{1.1}$	$\frac{\mathrm{Dy}}{1.22}$	$\frac{\mathrm{Ho}}{1.23}$	$\begin{array}{\|l\|} \hline \mathrm{Er} \\ 1.24 \\ \hline \end{array}$	$\frac{\mathrm{Tm}}{1.25}$	$\frac{\mathrm{Yb}}{1.1}$	$\begin{array}{\|l\|} \hline \frac{\mathrm{Lu}}{1.27} \\ \hline \end{array}$
		Actin	nides		$\frac{\mathrm{Th}}{1.3}$	$\frac{\mathrm{Pa}}{1.5}$	$\frac{\mathrm{U}}{1.38}$	$\frac{\mathrm{Np}}{1.36}$	$\frac{\mathrm{Pu}}{1.28}$	$\frac{\mathrm{Am}}{1.3}$	$\frac{\mathrm{Cm}}{1.3}$	$\frac{\mathrm{Bk}}{1.3}$	$\frac{\mathrm{Cf}}{1.3}$	$\frac{\mathrm{Es}}{1.3}$	$\frac{\mathrm{Fm}}{1.3}$	$\frac{\mathrm{Md}}{1.3}$	$\begin{array}{\|l\|} \hline \frac{\mathrm{No}}{1} \\ \hline \end{array}$	Lr

Figure 2-3

ehninger Principles of Biochemistry, Fifth Edition
2008 W.H. Freeman and Company

Between the hydroxyl group of an alcohol

 and water

Between the

 carbonyl group of a ketone and water

Figure 2-4
ehninger Principles of Biochemistry, Fifth Edition
2008 W.H. Freeman and Company

Between peptide

 groups in polypeptides

TABLE 2-3 So	Solubilities of Some Gases in Water			
Gas	Structure*	Polarity	Solubility in water $(\mathrm{g} / \mathrm{L})^{\dagger}$	
Nitrogen	$\mathbf{N} \equiv \mathbf{N}$	Nonpolar	$0.018\left(40^{\circ} \mathrm{C}\right)$	
Oxygen	$\mathrm{O}=0$	Nonpolar	$0.035\left(50^{\circ} \mathrm{C}\right)$	
Carbon dioxide	$\overbrace{0=c}^{8^{-}}=0$	Nonpolar	$0.97\left(45^{\circ} \mathrm{C}\right)$	
Ammonia	${ }^{H} \int_{N^{\prime}}^{H} \\|_{\delta}$	Polar	$900\left(10^{\circ} \mathrm{C}\right)$	
Hydrogen sulfide	$\left.{ }^{H} \backslash_{S}^{\prime}{ }^{H}\right\|_{\delta-}$	Polar	1,860 ($40{ }^{\circ} \mathrm{C}$)	

*The arrows represent electric dipoles; there is a partial negative charge (δ^{-}) at the head of the arrow, a partial positive charge (δ^{+}; not shown here) at the tail.
${ }^{\dagger}$ Note that polar molecules dissolve far better even at low temperatures than do nonpolar molecules at relatively high temperatures.

Table 2-3

Lehninger Principles of Biochemistry, Fifth Edition

- 2008 W. H. Freeman and Company

Figure 2-7a
Lehninger Principles of Biochemistry, Fifth Edition
02008 W.H. Freeman and Company

Figure 2-7b part 1
Lehninger Principles of Biochemistry, Fifth Edition

- 2008 W.H. Freeman and Company

Figure 2-8
Lehninger Principles of Biochemistry, Fifth Edition
Q 2008 W. H. Freeman and Company
$\left.\left.\begin{array}{|c|cc|}\hline \text { TABLE 2-4 } & \begin{array}{c}\text { van der Waals Radii and Covalent } \\ \text { (Single-Bond) }\end{array} \\ \hline \text { Elementii of Some Elements }\end{array}\right\} \begin{array}{c}\text { (ovalent radius for } \\ \text { van der Waals } \\ \text { radius (nm) } \\ \text { single bond (nm) }\end{array}\right]$

Sources: For van der Waals radii, Chauvin, R.(1992) Explicit periodic trend of van der Waals radii. J. Phys. Chem. 96, 9194-9197. For covalent radii, Pauling, L. (1960) Nature of the Chemical Bond, 3rd edn, Cornell University Press, Ithaca, NY.

Note: van der Waals radii describe the space-filling dimensions of atoms. When two atoms are joined covalently, the atomic radii at the point of bonding are less than the van der Waals radii, because the joined atoms are pulled together by the shared electron pair. The distance between nuclei in a van der Waals interaction or a covalent bond is about equal to the sum of the van der Waals or covalent radii, respectively, for the two atoms. Thus the length of a carbon-carbon single bond is about $0.077 \mathrm{~nm}+0.077 \mathrm{~nm}=0.154 \mathrm{~nm}$.
Table 2-4
Lehninger Principles of Biochemistry, Fifth Edition
Q 2008 W.H. Freeman and Company

COLLIGATIVE PROPERTIES

Melting Point
 Boiling Point
 Vapor Pressure

Osmotic Pressure

Hypertonic solutions are those in which more solute (and hence lower water potential) is present.
Isotonic solutions have equal (iso-) concentrations of substances. Water potentials are thus equal, although there will still be equal amounts of water movement in and out of the cell, the net flow is zero.
Hypotonic solutions are those with less solute (again read as higher water potential).

Figure 2-12
Lehninger Principles of Biochemistry, Fifth Edition
-2008 W. H. Freeman and Company

IONIZATION OF WATER

Concentration Definition

Molarity
Nomality
Molality
Percentage Concentration

Unit Conversion

CONCENTRATION

- Concentration: amount of substance present in a given volume of solution.
- Concentrated Solution: solution with a high concentration.
- Dilute Solution: solution with low concentration.
- Mole: amount of substance.
- Molar Concentration: the number of moles of the substance contained in 1L of solution, i.e., moles of solute/L of a solution
- Percentage Concentration.
- Very Low Concentration.
- Normality

$$
\begin{aligned}
& \text { - To find the Molarity of a solution, } \\
& \text { one has to use the following } \\
& \text { formula: } \\
& c=\frac{\mathrm{n}}{V} \\
& \mathrm{c}=\text { molar concentration (} \mathrm{mol} / \mathrm{L} \text {) } \\
& \mathrm{n}=\text { number of moles (mol) } \\
& \mathrm{V}=\text { volume (} \mathrm{L} \text {) } \\
& \text { - For example: What is the [} \mathrm{NaCl} \text {] } \\
& \text { in a solution containing } 6.25 \mathrm{~g} \text { of } \\
& \mathrm{NaCl} \text { in } 0.250 \mathrm{~L} \text { of solution? } \\
& \text { - *1 mole of } \mathrm{NaCl}=58.5 \mathrm{~g} \\
& \text { - *since mass and volume are given, all we } \\
& \text { need to do now is to first convert the mass } \\
& \text { into moles and then use the moles and } \\
& \text { volume to find Molarity of the solution. } \\
& \text { moles of } \mathrm{NaCl}=\frac{6.25 \mathrm{~g}}{58.5 \mathrm{~g} / \mathrm{mol}}=0.107 \mathrm{~mol} \\
& {[\mathrm{NaCl}]=\frac{0.107 \mathrm{~mol}}{0.250 \mathrm{~L}}=0.428 \mathrm{M}} \\
& \text { MW }=\frac{\text { Weight }}{\text { Moles }}
\end{aligned}
$$

- Molarity can be determined if the amount of solution and solvent is given. For example:
- If a 2.0 L of solution contains 8.0 mol of NaCl ,

$$
{ }^{\prime}[\mathrm{NaCl}]=\frac{8.0 \mathrm{~mol}}{2.0 \mathrm{~L}}=2.0 \mathrm{M}
$$

- When expressed in words, the unit symbol " M " is written as "molar".
- For example: If a 2.0 L of solution contains 5.0 mol of NaCl , the molar concentration can be written as:
- molar concentration of $\mathbf{N a C l}=2.5$ м writing "molar concentration of..." is $\quad[\mathrm{NaCl}]=2.5 \mathrm{M}$ using a set of brackets: [...].
- The Molarity of the sodium chloride is $\mathbf{2 . 5 0}$ molar.

Percentage Concentration

1) \% concentration can be in V / V, W/W, or W/V

- Like most \%s, V/V and W/W need to have the same units on top and bottom.
- W/V is sort of in the same units; V is mostly water and water's density is $1 \mathrm{~g} / \mathrm{mL}$ or $1 \mathrm{~kg} / \mathrm{L}$
- $3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} / 100 \mathrm{~mL}$ solution $\approx 3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} / 100 \mathrm{~g}$ solution

Very Low Concentration

2) Expressing concentrations in parts per million (ppm) requires the unit on top to be 1,000,000 times smaller than the unit on the bottom
E.g. $1 \mathrm{mg} / \mathrm{kg}$ or $\mu \mathrm{g} / \mathrm{g}$

- Multiples of 1000 are expressed in this order $\mu_{-}, m_{-}, \quad, k_{-}$("_" is the base unit)
- For parts per billion (ppb), the top unit would have to be 1,000,000,000 times smaller

3) Molar concentration is the most commonly used in chemistry. Ensure that units are mol/L.

Nomality

The number of "equivalent weights" of solute per liter of solution

Another way to express concentration
Used when it's important to know how many "reactive groups" are present in a solution rather than how many molecules

- Reactive groups and equivalent weight
- Used in reference to acids and bases
- Acids dissociate in solution to release H^{+}ions
- Bases dissociate to release OH^{-}ions
- For an acid:

1 equivalent weight is equal to the number of grams of that acid that reacts to yield 1 mole of H^{+}ions, that is, 1 mole of reactive groups

- For a base:
- 1 equivalent weight is equal to the number of grams of that base that supplies $1 \mathrm{~mole}^{\text {of }} \mathrm{OH}^{-}$, that is , 1 mole of reactive groups

$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+} \mathrm{OH}^{-}$

1 mole of NaOH dissociates to produce 1 mole of Na^{+}and 1 mole of OH^{-}

- Because 1 equivalent weight of NaOH is the number of grams that will produce 1 mole of OH^{-}ions, the equivalent weight of NaOH is the same as its molecular weight.

$$
\text { - } \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{4}^{-2}+2 \mathrm{H}^{+}
$$

1 mole of sulfuric acid dissociates to form
2 moles of H^{+}ions.

- It only requires 0.5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce 1 mole of H^{+}ions.
- Therefore, the FW of $\mathrm{H}_{2} \mathrm{SO}_{4}=98.1$, but its equivalent weight is $98.1 \times 0.5=49.1$

I M = $2 \mathbf{N}$
For $\mathrm{H}_{3} \mathrm{PO}_{4}, 1 \mathrm{M}=3 \mathrm{~N}$

Concentration after Dilution

$$
\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}
$$

For Example: 20 mL 0.5 M NaCl is diluted to 200 mL , to find the final NaCl concentration, we do the following calculation:

$$
\begin{gathered}
0.02 \mathrm{~L} \times 0.5 \mathrm{M}=\mathrm{C}_{2} \times 0.20 \mathrm{~L} \Longrightarrow \\
\mathrm{C}_{2}=\frac{0.02 \mathrm{~L} \times 0.5 \mathrm{M}}{0.20 \mathrm{~L}}=0.05 \mathrm{M}
\end{gathered}
$$

Unit Conversion

Weight: $1 \mathrm{~g}=1000 \mathrm{mg}=10^{6} \mu \mathrm{~g}$
Length: $1 \mathrm{~m}=10 \mathrm{dm}=100 \mathrm{~cm}=1000 \mathrm{~mm}$
Area: $1 \mathrm{~m}^{2}=100 \mathrm{dm}^{2}$
Volume: $1 \mathrm{dm}^{3}=1 \mathrm{~L}=1000 \mathrm{~cm}^{3}=1000$ c.c.

$$
=1000 \mathrm{~mL}=10^{6} \mu \mathrm{~L}
$$

SYMBEL	PREFLX	PRONUNCIATION	REPRESENTATION
T	TERA	te̛r ${ }_{\text {r }}$ ä	TRILLION
G	GIGA	ji' gà	BILLION
M	MEGA	měg' ${ }^{\text {a }}$	MILLION
k	KILO	Kil' ${ }^{\text {d }}$	THOUSAND
h	hecto	hěk'to	HUNDRED
da	DEKA	dek' a	TEN
d	DECI	dess' í	TENTH
c	CENTI	sén' tio	HUNDREDTH
m	MILLI	mil ${ }^{\text {i }}$	THOUSANDTIt
μ	MICRO	mi' krö	MILLIONTH
n	NANO	năn' ${ }^{\text {a }}$	BILLIONTH
P	PICO	p \bar{e}^{\prime} kó	TRILLIONTH
f	FEMTO	ferm' to	QUADRILLIONTH
a	ATTO	ăt' to	QUINTILLIONTH

Concentration Conversion

$\mathrm{M} \Rightarrow \mathrm{N}$

$\mathrm{M} \Rightarrow$ \%
$1 \mathrm{M} \mathrm{NaCl}: 1 \mathrm{M}=\frac{1 \mathrm{~mol}}{1 \mathrm{~L}}=\frac{1 \mathrm{~mol} \times 58.5 \mathrm{~g} / \mathrm{mol}}{1 \mathrm{D} \times 1000 \mathrm{~mL} / \mathrm{h}}$ $=\frac{58.5 \mathrm{~g}}{10 \times 100 \mathrm{~mL}}=\frac{5.85 \mathrm{~g}}{100 \mathrm{~mL}}=5.85 \%$
$\% \Rightarrow \mathrm{M}$
$5 \% \mathrm{NaOH}: 5 \%=\frac{5.0 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{5.0 \mathrm{~g} \times 1 \mathrm{~mol} / 40 \mathrm{~g}}{100 \mathrm{~mL} \times 1 \mathrm{~L} / 1000 \mathrm{~mL}}$

$$
=\frac{1.25 \mathrm{~mol}}{1 \mathrm{~L}}=1.25 \mathrm{M}
$$

Brønsted-Lowry Acids \& Bases

- A Brønsted-Lowry acid is a proton donor.
- A Brønsted-Lowry base is a proton acceptor.
- $\mathrm{H}^{+}=$proton

Figure 2.1 Examples of Bronsted-Lowry acids and bases

Reactions of Brønsted-Lowry Acids and Bases

- Loss of a proton from an acid forms its conjugate base.
- Gain of a proton by a base forms its conjugate acid.
- A double reaction arrow is used between starting materials and products to indicate that the reaction can proceed in the forward and reverse directions. These are equilibrium arrows.

Examples:

Lewis Acids and Bases

- A Lewis acid is an electron pair acceptor.
- A Lewis base is an electron pair donor.
- Lewis bases \& Brønsted-Lowry bases - both have an available electron pair-a lone pair or an electron pair in a π bond.
- A Brønsted -Lowry base always donates this electron pair to a proton, but a Lewis base donates this electron pair to anything that is electron deficient.
- A Lewis acid must be able to accept an electron pair, but there are many ways for this to occur.
- All Brønsted-Lowry acids are also Lewis acids, but the reverse is not necessarily true.
o Any species that is electron deficient and capable of accepting an electron pair is also a Lewis acid.

Lewis Acids

- A Lewis acid is also called an electrophile.
- When a Lewis base reacts with an electrophile other than a proton, the Lewis base is also called a nucleophile. In this example, BF_{3} is the electrophile and $\mathrm{H}_{2} \mathrm{O}$ is the nucleophile.
- Lewis acid-base reactions illustrate a general pattern in organic chemistry. Electron-rich species react with electron-poor species.
- In the simplest Lewis acid-base reaction one bond is formed and no bonds are broken..

Lewis Acids \& Bases

Other good examples involve metal ions.

Such bonds as the $\mathrm{H}_{2} \mathrm{O}$---> Co bond are often called COORDINATE COVALENT BONDS because both electrons are supplied by one of the atoms of the bond.

Acid Strength and $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$

- Acid strength is the tendency of an acid to donate a proton.
- The more readily a compound donates a proton, the stronger an acid it is.
- Acidity is measured by an equilibrium constant
- When a Brønsted-Lowry acid H—A is dissolved in water, an acid-base reaction occurs, and an equilibrium constant can be written for the reaction.

```
Dissolving an acid
    in water
```


Equilibrium constant

$$
K_{\mathrm{eq}}=\frac{[\text { products }]}{[\text { starting materials }]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}:^{-}\right]}{[\mathrm{H}-\mathrm{A}]\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

Acid Strength and $\mathrm{p} K_{\mathrm{a}}$

Because the concentration of the solvent $\mathrm{H}_{2} \mathrm{O}$ is essentially constant, the equation can be rearranged and a new equilibrium constant, called the acidity constant, K_{a}, can be defined.

$$
\text { Acidity constant }=K_{\mathrm{a}}=\left[\mathrm{H}_{2} \mathrm{O}\right] K_{\text {eq }}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}:^{-}\right]}{[\mathrm{H}-\mathrm{A}]}
$$

It is generally more convenient when describing acid strength to use " $\mathrm{p} K_{\mathrm{a}}$ " values than K_{a} values.

Factors that Determine Acid Strength

q Anything that stabilizes a conjugate base $A:^{-}$makes the starting acid H—A more acidic.
q Four factors affect the acidity of $\mathrm{H}-\mathrm{A}$. These are:

1. Element effects
2. Inductive effects
3. Resonance effects
4. Hybridization effects
q No matter which factor is discussed, the same procedure is always followed. To compare the acidity of any two acids:
o Always draw the conjugate bases.
o Determine which conjugate base is more stable.
o The more stable the conjugate base, the more acidic the acid.

1. Element Effects-Trends in the Periodic Table.

Across a row of the periodic table, the acidity of H—A increases as the electronegativity of A increases.

Positive or negative charge is stabilized when it is spread over a larger volume.

2. Inductive Effects

- An inductive effect is the pull of electron density through σ bonds caused by electronegativity differences in atoms.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\mathrm{H}$
ethanol
$\mathrm{p} K_{\mathrm{a}}=16$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$

No additional electronegative atoms stabilize the conjugate base.
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}-\mathrm{H}$
2,2,2-trifluoroethanol
$\mathrm{p} K_{\mathrm{a}}=12.4 \longleftarrow$ stronger acid

CF_{3} withdraws electron density, stabilizing the conjugate base.

3. Resonance Effects

- Resonance is a third factor that influences acidity.
- In the example below, when we compare the acidities of ethanol and acetic acid, we note that the latter is more acidic than the former.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}-\mathrm{H} \\
\text { ethanol } \\
\mathrm{p} K_{\mathrm{a}}=16
\end{gathered}
$$

- When the conjugate bases of the two species are compared, it is evident that the conjugate base of acetic acid enjoys resonance stabilization, whereas that of ethanol does not.

3. Resonance Effects

- Resonance delocalization makes $\mathrm{CH}_{3} \mathrm{COO}^{-}$more stable than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$, so $\mathrm{CH}_{3} \mathrm{COOH}$ is a stronger acid than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$.

- The acidity of $\mathrm{H}-\mathrm{A}$ increases when the conjugate base A : $^{-}$is resonance stabilized.

4. Hybridization Effects

- The final factor affecting the acidity of $\mathrm{H} — \mathrm{~A}$ is the hybridization of A.

Let us consider the relative acidities of three different compounds containing C-H bonds.

	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{3} \\ & \text { ethane } \end{aligned}$	$\mathrm{CH}_{2}=\mathrm{CH}_{2}$ ethylene	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ acetylene	
weakest acid \longrightarrow	$\mathrm{p} K_{\mathrm{a}}=50$	$\mathrm{p} K_{\mathrm{a}}=44$	$\mathrm{p} K_{\mathrm{a}}=25$	strongest acid
		reasing aci		

- The higher the percent of s-character of the hybrid orbital, the closer the lone pair is held to the nucleus, and the more stable the conjugate base.

4. Hybridization Effects

- As the lone pair of electrons is pulled closer to the nucleus, the negatively charged carbon appears less intensely red

Summary of Factors that Determine Acidity

Hydronium ion gives up a proton

Water accepts proton and becomes a hydronium ion
Figure 2-13
Lehninger Principles of Biochemistry, Fifth Edition

- 2008 W.H. Freeman and Company
pH of pure Water

$\mathrm{K}_{\mathrm{W}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{W}}\left[\mathrm{H}_{2} \mathrm{O}\right]$
$\mathbf{n}=\frac{\text { Weight }}{M W}=\frac{\mathrm{d} \times \mathrm{V}}{\mathrm{MW}}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\mathrm{n}}{\mathrm{~V}}=\frac{1000 \mathrm{~mL} \times 1 \mathrm{~g} / \mathrm{mL} / 18 \mathrm{~g} / \mathrm{mL}}{1 \mathrm{~L}}=55.5 \mathrm{M}} \\
& \mathrm{~K}_{\mathrm{W}}=1.8 \times 10^{-16} \mathrm{M} \\
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{W}}\left[\mathrm{H}_{2} \mathrm{O}\right]=1.8 \times 10^{-16} \mathrm{M} \times 55.5 \mathrm{M}} \\
& =1.0 \times 10^{-14} \mathrm{M}^{2} \\
& {\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]} \\
& {\left[\mathrm{H}^{+}\right]^{2}=1.0 \times 10^{-14} \mathrm{M}^{2}} \\
& {\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}} \\
& \mathrm{p}=-\log () \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.0 \times 10^{-7}\right)=7.0 \\
& \mathrm{pH}+\mathrm{pOH}=14
\end{aligned}
$$

Temperature	Kw
$-35^{\circ} \mathrm{C}$	$1.0 \times \mathbf{1 0}^{-17} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
$\mathbf{0}^{\circ} \mathrm{C}$	$1.12 \times \mathbf{1 0}^{-15} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
$25^{\circ} \mathrm{C}$	$9.91 \times \mathbf{1 0}^{-15} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
$\mathbf{6 0} \mathrm{C}$	$9.311 \times \mathbf{1 0}^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
$\mathbf{3 0 0}{ }^{\circ} \mathrm{C}(\sim 50 \mathrm{MPa})$	$9.311 \times \mathbf{1 0}^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$

$\begin{aligned} & \text { TABLE 2-6 } \\ & {\left[\mathrm{H}^{+}\right](\mathrm{M})} \end{aligned}$	The pH Scale		
	pH	[](%D0%BC)	pOH*
10^{0} (1)	0	10^{-14}	14
10^{-1}	1	10^{-13}	13
10^{-2}	2	10^{-12}	12
10^{-3}	3	10^{-11}	11
10^{-4}	4	10^{-10}	10
10^{-5}	5	10^{-9}	9
10^{-6}	6	10^{-8}	8
10^{-7}	7	10^{-7}	7
10^{-8}	8	10^{-6}	6
10^{-9}	9	10^{-5}	5
10^{-10}	10	10^{-4}	4
10^{-11}	11	10^{-3}	3
10^{-12}	12	10^{-2}	2
10^{-13}	13	10^{-1}	1
10^{-14}	14	$10^{0}(1)$	0

*The expression pOH is sometimes used to describe the basicity, or OH
concentration, of a solution; pOH is defined by the expression $\mathrm{pOH}=$
$-\log \left[\mathrm{OH}^{-}\right]$, which is analogous to the expression for pH . Note that in all
cases, $\mathrm{pH}+\mathrm{pOH}=14$.
Table 2-6
Lehninger Principles of Biochemistry, Fifth Edition
Q 2008 W. H. Freeman and Company

How to Find pH of A Solution?

- A Strong Acid or Strong Base Solution
- A Weak Acid or A Weak Base Solution
- A Solution with Both Weak Acid and Weak Base (Buffer)

pH of Strong Acid/Base

- Strong Acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$, HNO_{3}, etc. (Leveling Effect: which one is the strongest acid?)
- Strong Bases: $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}$
- For $\mathrm{HCl},\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]$, so $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log$ [HCl]
- For $\mathrm{NaOH},\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=$ $-\log [\mathrm{NaOH}], \mathrm{pH}=14-\mathrm{pOH}$

Conjugate Acid-Base Pairs

- Chemical entities that differ only by H^{+}in the equation are considered conjugate acid-base pairs:
- e.g. $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
- $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}$

conj. acid-base pair

Strengths of Conjugate Acid - Base pairs

- In chemical equilibrium, we have a competition between forward and reverse reactions. For acid and base reactions, this means we have a competition between two sets of acids and bases
- i.e. acid $1+$ base $1 \rightleftarrows$ acid $2+$ base 2
- If acid 1 and base 1 are stronger than acid 2 and base 2, then the forward reaction will dominate
- If acid 2 and base 2 are stronger than acid 1 and base 1, then the reverse reaction will dominate
- The stronger the acid, the weaker it's conjugate base and the weaker the acid, the stronger it's conjugate base.

pH of Weak Acid

	$\mathrm{CH}_{3} \mathrm{COOH}$	$\stackrel{\mathrm{Ka}}{ }$	$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$	
Initial Conc.	c		0	0
Change	$-x$		x	x
Final Conc.	$c-x$		x	x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{AcO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AcOH}]} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x} \times \mathrm{x}}{\mathrm{c}-\mathrm{x}}=\frac{\mathrm{x}^{2}}{\mathrm{c}-\mathrm{x}}
\end{aligned}
$$

$x^{2}=K_{a}(c-x)=K_{a} c-K_{a} x$
$x^{2}+K_{a} x-K_{a} c=0$
For $a x^{2}+b x+c=0$
$x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-K_{a}+\sqrt{K_{a}{ }^{2}-4 \times 1 \times\left(-K_{a} c\right)}}{2}=\frac{-K_{a}+\sqrt{K_{a}{ }^{2}+4 K_{a} c}}{2}$
If $C_{a} / K_{a}>100$, you can simplify K_{a} expression to just $K_{a}=\left(x^{2} / C_{a}\right)$

For acetic acid, if $c=0.25 \mathrm{M}, \mathrm{K}_{\mathrm{a}}=1.74 \times 10^{-5} \mathrm{M}$ $\mathrm{x}=0.00208 \mathrm{M}, \mathrm{pH}=-\log (0.00208)=2.68$
$\mathrm{x} / \mathrm{c}=0.00208 / 0.25=0.0083=0.83 \%$
$K a=X^{2} / C, X=0.00209 M$, almost no error.

For acetic acid, if $c=0.00025 \mathrm{~m}, \mathrm{x}=0.0000578$, $\mathrm{pH}=-\log (0.0000578)=4.24$
$\mathrm{x} / \mathrm{c}=0.0000578 / 0.00025=0.231=23.1 \%$
$\mathrm{Ka}=\mathrm{X}^{2} / \mathrm{C}, \mathrm{X}=\mathbf{0 . 0 0 0 0 6 6 0} \mathrm{M},(0.0000660-0.0000578) / 0.0000578$ $\times 100 \%=14.2 \%$.
$\mathrm{pH}=-\log (0.0000660)=4.18$.

Buffers

- Buffer Solutions resist a change in pH
- Buffers contain relatively large concentrations of either
- An acid, HA and its conjugate base A^{-}
- A base, B , and its conjugate acid $\left(\mathrm{BH}^{+}\right)$

Conjugate Acid-Base Pairs

- Chemical entities that differ only by H^{+}in the equation are considered conjugate acid-base pairs:
- e.g. $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
e.g. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{AcO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AcOH}]} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{AcOH}^{2}\right]}{\left[\mathrm{AcO}^{-}\right]}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{AcOH}]}{\left[\mathrm{AcO}^{-}\right]}\right)=-\log \mathrm{K}_{\mathrm{a}}+\left(-\log \frac{\left[\mathrm{AcOH}^{-}\right]}{\left[\mathrm{AcO}^{-}\right]}\right) \\
& =\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{AcO}^{-}\right]}{[\mathrm{AcOH}]}
\end{aligned}
$$

For a general equation:

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { [base] }}{[\text { acid] }}
$$

Titration Terminology

Titrant - solution of known concentration used in titration

Analyte - substance being analyzed
Standard Solution - A solution whose concentration is known accurately.

Primary Standard Solution -Prepared by dissolving carefully weighed solid sample in enough water to give an accurately known volume of solution.

Equivalent Point - point at which stoichiometrically equivalent amounts of reactants have reacted.

End Point - the point at which the indicator changes color

Figure 2-16
Lehninger Principles of Biochemistry, Fifth Edition
Q 2008 W.H. Freeman and Company

pKa of molecules for buffers in biochemistry studies

Name	PKa	Name	pKa
MES	6.15	Bicine	8.35
Boric acid	9.24	CHES	9.50
Phosphoric acid	$6.91\left(\mathrm{pK}_{\mathrm{a}} 2\right)$	Citric acid	$3.06\left(\mathrm{pK}_{\mathrm{a}} 1\right)$
Citric acid	$5.40\left(\mathrm{pK}_{\mathrm{a}} 3\right)$	Citric acid	$4.74\left(\mathrm{pK}_{\mathrm{a}} 2\right)$
ADA	6.60	Glycylglycine	8.40
Succinic acid	$3.06\left(\mathrm{pK}_{\mathrm{a}} 1\right)$	HEPES	7.55
Imidazole	7.00	HEPPS	8.00
Phosphoric acid	$2.12\left(\mathrm{pK}_{\mathrm{a}} 1\right)$	MOPS	7.20
Bis-Tris Propane	6.80	Phosphoric acid	$12.32\left(\mathrm{pK}_{\mathrm{a}} 3\right)$
Glycine amide (HCl)	8.20	PIPES	6.80
Formic acid	3.75	TES	7.50
Acetic acid	4.76	Tricine	8.15
Succinic acid	$5.57\left(\mathrm{pK}_{\mathrm{a}} 2\right)$	Tris	8.30

Figure 2-21
Lehninger Principles of Biochemistry, Fifth Edition

- 2008 W.H. Freeman and Company

1. Find out the pH of 0.01 M HCl and 1.0 M NaOH solution

- Calculate the pH of 0.2 M AcOH with a Ka of $1.74 \times 10^{-5} \mathrm{M}$
- Calculate the pH of sodium acetate and acetic acid buffer at the following concentration: $[\mathrm{NaAc}]=0.17 \mathrm{M},[\mathrm{AcOH}]=0.35 \mathrm{M}$
- Prepare the 4 L of PBS buffer by given the condition that $[\mathrm{NaCl}]=0.15 \mathrm{M},\left[\mathrm{PO}_{4}{ }^{3-}\right]=0.01$ $\mathrm{M}, \mathrm{pKa}=6.91$.

